Search results for "Inverse conductivity problem"
showing 2 items of 2 documents
Spectral approach to D-bar problems
2017
We present the first numerical approach to D-bar problems having spectral convergence for real analytic, rapidly decreasing potentials. The proposed method starts from a formulation of the problem in terms of an integral equation that is numerically solved with Fourier techniques. The singular integrand is regularized analytically. The resulting integral equation is approximated via a discrete system that is solved with Krylov methods. As an example, the D-bar problem for the Davey-Stewartson II equations is considered. The result is used to test direct numerical solutions of the PDE.© 2017 Wiley Periodicals, Inc.
Reconstruction from boundary measurements for less regular conductivities
2012
In this paper, following Nachman's idea and Haberman and Tataru's idea, we reconstruct $C^1$ conductivity $\gamma$ or Lipchitz conductivity $\gamma$ with small enough value of $|\nabla log\gamma|$ in a Lipschitz domain $\Omega$ from the Dirichlet-to-Neumann map $\Lambda_{\gamma}$. In the appendix the authors and R. M. Brown recover the gradient of a $C^1$-conductivity at the boundary of a Lipschitz domain from the Dirichlet-to-Neumann map $\Lambda_{\gamma}$.